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Perturbation Analysis of a Stationary 
Nonequilibrium Flow Generated by an External Force 
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The stationary flow of a gas in a slab under the action of a constant external 
force parallel to the walls is analyzed in the context of the Bhatnagar-Gross- 
Krook model kinetic equation. The force produces spatial gradients along the 
coordinate normal to the walls. By performing a perturbation expansion in 
powers of the force, we obtain the hydrodynamic fields up to fifth order in the 
force. Then the velocity distribution function and all its moments are evaluated 
to third order. The expansion coefficients are polynomials in the space variable 
of a degree increasing linearly with the expansion order. Although the series 
expansion is only asymptotic, it shows bow the state of the system is modified 
by a variation of the external force beyond the linear regime. 

KEY WORDS:  Nonequilibrium steady state; Bhatnagar-Gross-Krook kinetic 
equation; external force; perturbation expansion. 

1. INTRODUCTION 

Nonequi l ibr ium steady states are usually obtained in the laboratory by 
application of appropriate boundary  conditions. From a theoretical, as well 
as a computer  simulation,  point  of view, it is also useful to consider steady 
states driven out of equil ibrium by the action of external forces. In the limit 
of small forces, the response of the system, as measured by the presence of 
hydrodynamic gradients and fluxes, is linear. In general, the strength of the 
forces provides a parameter  measuring the departure of the system from 
equilibrium. Some examples of nonequi l ibr ium steady states generated 
by external forces are the homogeneous heat conductivity tl'-'~ and color 
conductivity 13'4~ problems. 
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In this paper, we consider a gas enclosed between two infinite parallel 
plates at rest and kept at the same temperature. A constant external force 
F is applied along a direction, say x, parallel to the plates. In the steady 
state, the force F produces gradients of the hydrodynamic variables along 
the direction, say y, orthogonal to the plates. This flow has been analyzed 
by computer simulation of a lattice gas cellular automaton t5~ and also 
theoretically in a dilute gas.  (6"7) 

At first order in the force, the resulting flow is equivalent to the well- 
known Poiseuille flow to Navier-Stokes order generated by a pressure 
gradient along the x direction, t6~ Beyond that order, such an equivalence 
no longer holds and the steady flow driven by the external force is worth 
studying by itself. In ref. 6 an exact solution of the Bhatnagar-Gross- 
Krook (BGK) model kinetic equation was found for a particular value of 
the external force. The solution is characterized by a constant pressure and 
parabolic profiles of the flow velocity and the temperature with respect to 
an adequate space variable. That special value of the force is quite large, 
so that a physical picture of the nonlinear regime for moderate forces is still 
lacking. 

The aim of this paper is to obtain rigorously the first few terms of the 
expansion in powers of the force of the general solution of the BGK equa- 
tion for this problem. The results give evidence that the expansion is only 
asymptotic. For small forces, however, the expansion is useful for obtaining 
the hydrodynamic profiles, as well as the momentum and energy fluxes, 
beyond the linear domain. The organization of the paper is as follows. The 
BGK kinetic model and some basic definitions are presented in Section 2. 
In Section 3 the profiles of pressure, velocity, and temperature are obtained 
up to fifth order in the external force. The velocity distribution function 
and all its moments are derived in Section 4 up to third order in the force. 
Finally, the results are discussed in Section 5. 

2. KINETIC M O D E L  

Let us assume that a dilute gas is found in a general nonequilibrium 
state in the presence of an external force F. The dilution condition allows 
us to use a kinetic theory description, according to which the state of the 
system is completely determined by the one-particle velocity distribution 
function f(r ,  v; t). For a dilute gas, this function obeys the Boltzmann equa- 
tion. t8~ Nevertheless, the intricate structure of the Boltzmann collision term 
makes it difficult to obtain explicit solutions far from equilibrium. As a 
consequence, we will adopt the Bhatnagar-Gross-Krook (BGK) kinetic 
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equation as a model of the Boltzmann equationJ 8~ The BGK equation 
reads 

O O ~ F f = _ v ( f _ f L E  ) ~ f + v " V f + ~v " m (1) 

The general idea behind Eq. (1) is the assumption that the net effect of 
collisions is to make f tend to relax with a characteristic frequency v(r, t) 
toward the local equilibrium distribution function 

I m ]3/2 
fLE(r, v; t )=n(r ,  t) 2~kBT(r, t)J 

{ m [ v - u ( r ' t ) ] 2 }  
• exp 2kB T(r, t) (2) 

In this equation, m is the mass of a particle, k B is the Boltzmann constant, 
n(r, t) is the local number density, u(r, t) is the local flow velocity, and 
T(r, t) is the local temperature. They are defined in terms of f as 

n= f dv f (3) 

nu = f dv vf (4) 

mf n k B T = ~  dv V2f (5) 

where V = v - u  is the peculiar velocity. The five quantities n, u, and T 
are the hydrodynamic fields and are associated with the densities of the 
conserved quantities (mass, momentum, and energy). The flux of mass 
is mnu. The fluxes of momentum and energy are, respectively, the pressure 
tensor 

Pu = m f dv Vi V j f  (6) 

and the heat flux vector 

mf 
q=~-  dv V2Vf (7) 

The trace of the pressure tensor is 3p, where p = nka T is the hydrostatic 
pressure. The collision frequency v scales with the density n. On the other 
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hand, the interaction potential governing the collisions among the particles 
is introduced through the dependence of v on T. For  instance, v oc nT 1/2 
for hard spheres and v oc n for Maxwell molecules. 

Equation (1) can be viewed as a nonhomogeneous linear equation for 
f. Its solution can be formally written as 

f = ( 1  + s ft.E (8) 

where LZ is a linear operator that incorporates the initial and boundary 
conditions, if necessary. Equation (8) gives a formal solution only, since fLE 
is still a nonlinear functional o f f  through n, u, and T. On the other hand, 
insertion of Eq. (8) into the right-hand sides of Eqs. (3)-(5) gives a closed 
set of five nonlinear coupled equations. Once its solution is known, Eq. (8) 
gives the explicit solution of the BGK equation for the physical problem of 
interest. Of course, this program is very difficult to achieve in practice for 
general nonequilibrium states. It has been recently carried out, for instance, 
for the steady Fourier and Couette flows, both numerically (9) (finite 
Knudsen number) and analytically ~1~ (zero Knudsen number) .  

Let us assume now that the gas is subject to the stationary flow 
described in Section 1. In that case, Eq. (1) becomes 

Of.  F O f  , :  
v,, ~y t m ~v,. = - - v u - - f L E )  (9) 

We choose the plane y = 0 as the one at equal distances from both plates, 
which are located at y = +_L. Consequently, the symmetries of the problem 
impose the following relations: 

f ( y ,  v.,., v>,, v=lF)= f ( y ,  v.,., v>., - v : l F )  

= f ( - y ,  vx, -v>., v:lF) 

= f ( y ,  --v,., v>., v:l - F )  (10) 

where the notation f (y ,  v [ F) has been used to denote the distribution func- 
tion at a given value F of the external force. Thus, n ( y l F ) = n ( - y l F ) =  
n ( y l - F ) ,  u , . ( y l F ) = u x ( - y l F ) =  - U , - ( Y l - F ) ,  u>.=u. .=0,  and T(yhF)= 
T ( - y l F ) =  T(yl - F ) .  

Henceforth, we specialize to Maxwell molecules, i.e., v ~ p /T ,  although 
the results could be easily extended to other interactions. In order to 
simplify the expressions it is useful to introduce dimensionless quantities 

v* = (kB To~m) -I/z v (11 ) 

s (y )=(kBTo/m)  -1/2 dy 'v(y ' )  (12) 
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f * ( s ,  v*)=not(kaTo/m)312f(y ,  v) (13) 

P* = Po lp (14) 

F* = m -1(k  a To~m) - I/'- Vo l F (15) 

where the subscript 0 refers to quantities at y = 0 .  As a consequence, 
Eq. (9) can be rewritten as 

v .  O(*+  F .  r ' o f * _  - f * + f * E  (16) 
. ds p* Ov.* 

The scaled space variable s measures distance in units of a local mean free 
path. Thus, the value s = e-~ at the boundary y = L represents an inverse 
Knudsen number. The force unit chosen in Eq. (15) produces a velocity 
increment of the order of the thermal velocity over a mean free time. The 
scaled force F* represents the uniformity parameter of the problem and 
measures the departure from equilibrium. The two independent parameters 
e and F* characterize the nonequilibrium stationary state. 

In the following it is understood that only the dimensionless quantities 
occur, unless otherwise specified, and the asterisks will be deleted. From 
Eq. (16) one can get the balance equations: 

0P,., 
8 s  = 0  (17) 

OP":" -F  (18) 
0s 

Oq.,: 3u,. 
3s + P.,-y --~s- = 0 (19) 

Equation (18) shows that P,.,.= Fs exactly. If the velocity profile is known, 
Eq. (19) can be used to obtain qy. 

The formal solution of Eq. (16) is 

f(s ,  v )=  dsl exp - - -  s - s l  + ds, ./'Le(sj, v) 
. '  : - I  Or' ,~l - P - - ~ 2 )  

+exp  - ~ . ,  ds, ~ / ' ~ v , . J f h ( v )  (20) 

where fh(v) is the boundary condition at s = e - ~ .  In this paper, we are 
interested in the properties of the gas in the bulk rather than near the 
boundaries. Therefore, we will take the limit of zero Knudsen number 
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(e--+ 0) and no specific boundary conditions will be imposed. Instead, we 
will look for a "normal" solution of Eq. (9), i.e., a solution that depends on 
3, entirely through a functional dependence on n, u, and T. Consequently, 
it is preferable to rewrite the formal solution of Eq. (16) in the form given 
by Eq. (8) with 

s v,.a.,.+F ,. - 1 

( = ( - 1 )  k v.,.a.,.+F ~,. (21) 
k = l  

where we have introduced the shorthand notations a,.= d/as and ~, .= 
a/avx. The consistency conditions for determining the hydrodynamic fields 
a r e  

I dv ~(-afL E = 0 (22) 

I dv t,.~ .-CPfL E = 0 (23) 

I dv = (24) v 2 ~ f L E  0 

It is important to note that the operator 0,. does not commute with T/p. 
Consequently, 

( T ) k k k k- ,  
v . , . a~+F7~. , .  =t,,.a.,.+Fv',:-'~,.. " ,-oZ eiT,,p a,.k- '- '  

k - 2  k - 2  I r k - 2 - I - r  
r '  k "C~ "~ i T.__a ~ a s  +,"v,. -~-,. Z ~ a~ 

t=o r=O " P " 'P  

+ --. (25) 

where the ellipsis represents terms of third and higher order in ~,., which 
give vanishing contributions in Eqs. (22)-(24). Insertion of Eq. (21) into 
Eqs. (22)-(24) yields, respectively, 

0 ~ (2k 1)~T = __ . .  "~2kG. v pj~k I (26) 
k = l  

0 = }" (2k 1 )IT a2ku l -- .. .,. x P Tk  - 
k = l  

+ F  l +  (2k-3) ! !  Z a ~ u a ,  (27) 
k = 2  / = 0  
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~r 

0 ~ ( 2 k -  1)![ '* = O; [ ( 2 k + 3 )  T+u~.] pT k - '  
/ . :=1 

+2F u.,.+ (2k-3)!! 2 O~. O~*. "--'u,.pr * - 2 .  
k = 2  / = 0  

+2F-' + (2k-3)!~ Z E a o;r-o~?-2- ' -~pr *-'- 
k = _ ,  /=o ~=o " P " P 

(28) 

The steps leading to these equations are worked out in ref. 6 and will not 
be repeated here. Equations (26)-(28) are the conditions that the fields 
p(sl F), T(s IF) ,  and U,.(s I F) must satisfy for arbitrary values of F. They are 
really equivalent to integral equations [see Eq. (20)] and this is why 
derivatives of all orders are present. Nevertheless, this representation will 
be useful for evaluating the fields in powers of F, as the next section shows. 

3. H Y D R O D Y N A M I C  FIELDS 

In order to solve the set of equations (26)-(28), we perform a pertur- 
bation expansion in powers of F: 

u.,.(s I F) = u~l)(s) F +  u~3~(s) F 3 + U~5)(S) F 5 + (-0(F 7) (29) 

p(sl  F) = I + pt'-~(s) F 2 + pl4)(s) F 4 + (.9(F 6) (30) 

T(sl F) = 1 + T~ZJ(s) F 2 + Tt4)(s) F 4 + ~ (F  6) (31 ) 

Because of our choice of units, p~2k)(0)= T~Ekl(0)= 0. We also choose a 
reference frame stationary with the fluid at s - -0 ,  so that u ( E k - l J ( 0 ) = 0 .  

Substitution of Eqs. (29)- (31) in to  Eqs. (26)-(28) allows one to get the 
expansion coefficients recursively. In this section we are going to obtain the 
coefficients up to fifth order, i.e., those explicitly written in Eqs. (29)-(31). 

To first order in F, Eq. (27) yields 

whose solution is 

0 =  L ( 2 k -  1)!! 8~ku~l~+ 1 (32) 
k = l  

z , C , ) ( s ) =  , , - s s -  (33) 

This is the parabolic velocity profile that is characteristic of the Poiseuille 
flow. 
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Next, to second order in F, Eqs. (26) and (28) become, respectively, 

0 =  Z ( 2 k - l ) ! !  2k .~21 c~. [t~ + ( k -  1 ) T c2~] (34) 
k = l  

0 = ~ (2k - 1 )![ 8~k{(2k + 3)[p'2~ + k T  c2~] + (u~'~) 2 } 
k = l  

+ 2  ~ (2k - -1 ) ! !d~k-2u~+2u l l~+2  (35) 
k = 2  

Equations (34) and (35) show that both p~'-~(s) and TI21(s) are polynomials 
of degree less than or equal to 4. The coefficients are obtained by substitu- 
tion and the result is 

p~21(s) = 6s2 (36) 

T ( 2 ) ( S )  = 19 2 1 4 _~s - ~ s  (37) 

Proceeding in a similar way, and after rather tedious calculations, we get 

2737 s2 13 4 uC3~(s)=- 2---T- - ~ s  (38) 

326,622 s2 _ ~ s4 (39) 
P l 4 ) ( S )  - -  12-""'~ 

T(4)(S ) = 25,472,912 s2 _ 33,157 2~0 
3125 750 s4-- s6 (40) 

u~S~(s ) -  11,294,974,736 s2 + 5,168,033 s4 5914 6 
3125 375 + 3--3~ -s (41) 

By following the same recursive procedure, one can get higher-order 
coefficients, although the algebra becomes progressively more tedious. 
Inspection of Eqs. (26)-(28) shows that pIke, ul,~ and T Ik~ are (even) poly- 
nomials in s of degrees k, k + 1, and k + 2, respectively: 

k/2 
plk)(s)= ~ |k) 21 P21 S (42) 

/ = 1  

(k + 1 I/2 
/ 2 ( k ) ( s )  = ~ , , �91  "2/~ (43) 

/ = 1  

(k + 2)/2 
TIk'(s) = ~, T (k'~21 - ~ l  ~ ( 4 4 )  

I = l  
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Consequently, the expansions (29)-(31) in powers of F can be recast into 
expansions in powers of s: 

u.,.(sl F) = s2Fu2(F) + s4F3u4(F) q- s6FSu6(F) q- t~0(S 8) (45) 

p(sl F) = 1 + s2F2p2(F ) + s4F4p4(F ) + d~(s 6) (46) 

T(s l f )=  1 + s2T2(F)+ s4F2T4(F)+ s6F4T6(F)+d)(s 8) (47) 

where 

u2t(F)= ~. u~ztl-l+2k'F 2k (48) 
k=O 

p21(F) ~. ,+ ,k~ 2~ = P2/ - F (49) 
k=0 

T21(F)= Y. r~,ll-2+2k~F 2~ (50) 
k=0 

From Eqs. (33) and (36)-(41) one gets 

u2(F) = 21 27372___5_ F2 + 11,294,974,7363125 F4 q- E~(F6) (51) 

13 I 397,541 F2 + (9(F4)1 (52) u4(F) =- -- 'i- ~ 1 2" ' "~  

5914 
u6(F) = ~ -{'- ~0(F 2) (53) 

p2(F)=~[1 54'437F2+~~ (54) 

223 
p4(F) = - 2--5" + C(F-') (55) 

T 2 ( F ) = F 2 I ~  5 25,472,912,31_.~ F -+  C(F4)] (56) 

33,157 , 
T4(F) = -  3--~ [1 +-----~-ff-- F- + 60(F4)] (57) 

43 
T6(F) = -- 25----0 + s176 (58) 

These equations clearly indicate that the series expansions in powers 
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of the external force are only asymptotic. Thus, their practical usefulness is 
restricted to small forces. On the other hand, the expansions give informa- 
tion about how the hydrodynamic profiles are expected to be affected by 
a modification of the force. This information is complemented by the exact 
solution of Eq. (16) found in ref. 6 for the special value F =  2.52. For that 
value, u 2 = - 1 4 6 ,  T 2 " - 1 6 4 ,  /24=//6 . . . . .  0, p2=P4  . . . . .  0, and 
T4-- T6 . . . . .  0. Comparison with Eqs. (51)-(58) indicates that u2(F), 
-u4(F) ,  p2(F), and T2(F) possibly decrease monotonically, while the 
behavior of T4(F) cannot be monotonic. The fact that all the coefficients 
except u2 and T2 vanish in the special solution suggests that a hidden rela- 
tionship between those coefficients might exist. Nevertheless, our results are 
not sufficiently extensive to elucidate such a relationship. 

The results of this section allow us to obtain explicitly the connection 
between the space variables y and s up to fifth order in F. From Eq. (12) 
one has 

), = i~ ds , T( s' ) 
p(s') 

11 1 ) = s -  F:'s 3 ~-g +-~-.6 s 2 

_F4s3(17,307,362 26,071s, ~_~0 ) 
\ 3125 ~- 7 f f ~  + S4 + (9(F6) (59) 

4. V E L O C I T Y  D I S T R I B U T I O N  F U N C T I O N  A N D  
V E L O C I T Y  M O M E N T S  

Once the hydrodynamic fields are known in the form of series in 
powers of F, the velocity distribution function f can be explicitly derived 
from Eqs. (8) and (21). First, we write 

f = f L E ( 1  + ~0) (60) 

Then we perform an expansion of ~p in powers of F in the same spirit as 
in the expansions (29)-(31): 

qg(s, VIF)=qg~t~(s,V)F+tpl2}(s,V)F" +tpl3~(s,V)F3+CO(F 4) (611 

The coefficients can be obtained recursively. For the sake of conciseness. 
we omit here the technical details and just quote the expressions for the 
three first coefficients. They are 
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~0~'~= V.,.[1 + V.,.(s- V,.)] 

,p,-'l= + v2)v s "- 

+ ~ { ( 1 0 V ~ - 1 9 )  V Z - 5 1 5 V ~ . ( 3 V ~ - 2 ) - 5 V ~ +  3]} Z,.s 
1 2 "~ "1 +~3{515Vx( 3 4 3 V ~ , + l ) _ 5 V 4 , + 8 V ~ _ 5 ]  V y - -  . . . 

- vEVE(lOV2-19)} 

~p,3, __ V,.{~oi.~,.sS+~o(4VZ_29). V-ys - ~ [(6 V~.- 1 .  ) 10VZ- 75 V~. V; 

14o9 

(62) 

(63) 

9 1 ~ 9 9 9 9 - 13(15V7 + 11)] Vys3+~[(70V-.,.--53) V-. , .V--(2Vy-1)75V-. , .V,  z.. 

4 V "~ s 2 - 4 0 V y - 2 2 5  ~ - 3 0 ]  - ~ [ 2 ( 7 5 V 4 - V 7 V ~ . + 1 9 )  V 2 

- 7 5 ( 5 V 4 - 4 V ~ +  1) V z,.+V5V4y-V22VZ.,.-5417] Vys 

+h[(150V4,.-164V~+SV)V~V2-25(15_ . " V.,.-6 15V~ + 6 .  V~' - 1) V;.: 

+ 75 V 6 4 2 �9 - 8 7 7 V y - 5 2 6 5 V y - 7 5 ] }  (64) 

We could take advantage of our knowledge of u.,., p, and T up to fifth 
order in F to evaluate ~0 up to that order as well, but the expressions of ~o ~4~ 
and q~C51 are excessively tedious and lengthy. On the other hand, the 
general structure of q~lk~ can be induced from Eqs. (62)-(64): 

2 k - -  1 

~plk~(s, V)=  ~ ~blkl(V)s' (65) 
/ = 0  

where ~b~)(V) is a polynomial of degree 3 k - l  in V and of parity / with 
respect to V,. and parity k with respect to V x, on account of Eq. (10). 

We define the velocity moments of the distribution as 

m=.a.;.(slF)= NV V,.V.,.V=f(s, VIE) (66) 

with a, fl, y =0,  1, 2 ..... Insertion of Eq. (60) into Eqs. (66) gives the decom- 
position 

M,. , . ; . (sIF)  LE = M,.a.;.(sl F) + AM~.a.;.(sl F) (67) 

where 

L E  f ,, M ~.t~.;.(sl F) = dV V~ V,t! V"~fLE(S, V IF) 

= C~CI~C;.p(s[ F)[T(slF)]~,+t~+;.- 21/2 (68) 



1410 Tij and Santos 

and 

~m=,a.~.(slF)=f dV V ~ V ~ f L e ( S ,  V IF)  q)(s, V IF)  (69) 

In Eq. (68), Co = 1, C~ = (0~ - I )!! ifc~ = 2, 4, 6 ..... and  C= = 0  i f ~  = 1, 3, 5 ..... 

The  kinet ic  e q u a t i o n  (16) genera tes  the fo l lowing  h ie ra rchy  for the m o m e n t s :  

0 Ou.,. M T 
~s M''t~+~'~'+~ Os ~._~./~+~.;.-otF-M~_~.l~.;.=-AM~.~.;. 

P 
(70) 

This  h ie ra rchy  c a n n o t  be so lved  for a rb i t r a ry  F, as m o m e n t s  of  a g iven 

degree  are  coup led  to m o m e n t s  of  h igher  degree.  H o w e v e r ,  the k n o w l e d g e  

of  ~o up to th i rd  o rde r  in F a l lows one  to get dM~.a~, up to that  order :  

dM,.o,;.(slF)= ~l~ ~.j F 2 ~ 3 ~  ~3 M ~.t~...(s) F +  M + + (9(F 4) (71) a.ll.'~, " ' ~  ~.11.7-- 

By using Eqs. (62)-(64), we get 

M~'.)p.;.(s) = C ,  +,  C~.(Ce +,  s - /~C.e)  (72) 

~21 l + 2 ( 4 ~ _ / ~ _ 7 )  s 2 M,.tj.;.(s) = C,C;.{~Ca+ j(a + fl + y - 1) s 3 + gCt~ 

- ~ C a + j [ - l O f l  2 + f l ( 6 5 o t -  1 0 y -  l l ) + 9 9 a - y + 2 1 ]  s 

+ ,-~Ct~ [ - lOft 3 + fl"(65c~ - 10y - 41 ) + fl(204ct - 217 - 31) 

+ 1 6 4 a -  117]} (73) 

M e 3 )  , �9 ,./~.;.~s j = C= +,  C;.{ - ~o Ct~ + j(~ + fl + ? - 2) s s 

+ ~Ct~[9/~ 2 +/~(9c~ + 9y - 1 ) + 8(~ + y - 1 )] s 4 

I + ~ C t ~  + ~[ - 120/32 +/~(30~ - 1207 - 313) 

+ 137c~ - 1637 + 266]  s 3 

- ~ C a [  - 140/~ 3 + 5/~2(32~ - 28? - 175) 

+/3(615~ - 435y - 1209) + 2(218c~ - 157y - 218) ]  s 2 

+ 2~CB+ , [  - 150/~ 3 + /3 : (225~  - 150y -- 1421 ) 

+ 2/~(602~ - 373y - 1890) + 1545~ - 930y + 2377]  s 

- ~ C t ~ [ -  150fl 4 +/~3(225~ - 150? - 2011 ) 

+/32(1814~ - 11867 - 8837) +/~(4424~ - 28517 - 9811 ) 

+ 5(562~ - 363? - 562)]  } (74) 
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M ( k )  , , In general, ,.p.;.ts~ is a polynomial of parity fl and degree 2 k -  1 (if 
(k)  ~ , /?=odd) or 2 k - 2  ( i f /?=even).  Besides, M=.~.~,~s)=0 if ~ and k have a 

different parity. In particular, the pressure tensor and the heat flux vector 
are 

P,x(slF)= l -k-(3~5 d- l-~ s2) F2 + (O(F 4) 

e.,..,.(s[ F) = 1 - 32~ F 2 + (_9(F 4 ) 

( 22 4 ) F 2  P.--_(slF)= 1 + - ~ + ~ s  2 + (O(F 4) 

pv(s l  F) = sF + ~O(F 5) 

[ /21,162 159s2 29 )F2  q . , . ( s l r ) = - r  1 - ~ + - - ~ -  +~-6s 4 

1 3 q~.(slF)=-~s V-+d~(r  4) 

(75) 

(76) 

(77) 

(78) 

+ C(F4)] (79) 

(80) 

Equations (76), (78), and (80) are consistent with the balance equations 
(17)-(19). In fact, the result P.,:,,=sF is exact to any order in F. We could 
use Eq. (19) and the knowledge of u,. to fifth order to get q.~. up to seventh 
order. Equation (79) shows that the force induces heat transport along the 
force direction, even in the absence of gradients along that direction. 

According to Eqs. (75)-(77), the normal stresses created in the system 
by the external force are such that Px,.> p >  P.-.-> P,.,.. Also, -q.,./F and 
q.,/(�89 2) tend to decrease and increase, respectively, when F increases. 
These qualitative behaviors agree with the results obtained from the 
exact solution for F~2.52,  in which case 16) p, . , . -  2.70, p =  1, P==0.22,  
P,.,. "~ 0.08, and q.,./(ls3F2) = --2u2 "" 291. 

5. D ISCUSSION 

In this paper we have been concerned with the stationary flow of a 
dilute gas confined between two infinite parallel plates and subject to the 
action of a constant external force F---F~ parallel to the plates. The force 
drives the system .out of equilibrium and induces hydrodynamic gradients 
along the direction y normal to the plates. In the limit of small force 
strength, the state of the gas mimics the Poiseuille flow due to a small 
pressure difference along the x direction. In both cases, the density and 
temperature are constant, the velocity profile is quadratic, and the pressure 
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tensor is given by Newton's law. Beyond this linear regime, the response of 
the system is more complicated and a much richer rheological state arises. 

In order to get explicit results, we have used the Bhatnagar-Gross- 
Krook (BGK) kinetic model of the Boltzmann equation. Also, we have 
restricted ourselves to Maxwell molecules. The BGK equation for this 
problem has been solved in the bulk by means of a perturbation expansion 
in powers of the force. More specifically, the profiles of pressure, tem- 
perature, and velocity have been obtained to fifth order in F, and the 
velocity distribution function has been derived to third order, the expan- 
sion coefficients being polynomials in the space variable. The results clearly 
indicate that the expansion is asymptotic, but not convergent. This means 
that the state of the system is singular at equilibrium, i.e., at F =  0. This is 
not surprising, as similar asymptotic series appear, for instance, in the 
stationary Fourier and Couette flows I'~ and in the uniform shear flow. I''~ 

The perturbation solution obtained here complements the closed exact 
solution obtained previously t6) for a special value of the force. In both 
cases, for instance, the normal stresses follow the behavior P x x - P  > 0 > 
P : : - p  > P y y - p .  It is interesting to note that the profiles in the special 
solution are much simpler than in the general solution. This suggests that 
a certain relationship among the expansion coefficients could exist. 

Let us compare the profiles obtained in this paper with the Navier- 
Stokes predictions. In the units chosen in this paper, the Navier-Stokes 
constitutive equations are 

= p, s = e. s (81)  

p.,.N s = Oux (82) 
�9 O s  

q NS=0 (83) 

5 8 T  q~S = (84) 
- 2 0 s  

In Eqs. (82) and (84) we have taken into account that the shear viscosity 
and the thermal conductivity in the BGK model are r l = p / v  and 
K = ~ k B p / m v ,  respectively. Insertion into the exact balance equations 
(17)-(19) yields the hydrodynamic profiles: 

pNS= 1 (85) 

u N S  ~ 1 2 .~ - ~ F s  (86) 

T Ns = 1 - ~ F 2 s  4 (87) 
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Equations (85) and (86) are exact to first and third order, respectively, 
in F. Nevertheless, comparison between Eqs. (37) and (87) shows a dis- 
crepancy in the temperature profile to second order in the force. This 
discrepancy is due to the different scaling assumed in each approach. In 
this work we have assumed first that the Knudsen number vanishes (e ---, 0) 
and then that the external force F (relative to the one producing a finite 
change of velocity over a mean free time) is weak. In the Navier-Stokes 
equations, on the other hand, one assumes F ~  e2. ~71 To clarify this point, 
let us introduce the variables g = es and ~ '= e -  2F. The variable g measures 
the distance in units of the system size, so that g-- _+1 at the boundaries. 
The parameter _P measures the external force relative to the one producing 
a finite change of velocity over times in which the effect of the viscosity is 
felt. In terms of these quantities, the temperature profile derived in this 
paper becomes 

�9 19 -2 2 3_~4) ~ff'2 _]._ 0(~2)  (88)  T = l + t , - 3 s e  - 

In the limit e ~ 0, Eq. (88) agrees with Eq. (87). 
The method followed here to get the hydrodynamic profiles cannot be 

directly applied to the Boltzmann equation, even for Maxwell molecules. 
Instead, one has to deal with a moment hierarchy similar to Eq. (70). 
However, if one assumes that the expansion coefficients of the moments 
have the same polynomial structure as found here, the hierarchy can be 
solved recursively. Working along these lines, we plan to obtain the first 
few terms in the perturbation expansions of the hydrodynamic fields and 
the fluxes corresponding to the Boltzmann equation for Maxwell 
molecules. 
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